Structural Jacobian Accumulation with Unit Edges

Andrew Lyons

Computation Institute, University of Chicago

email: lyonsam@gmail.com

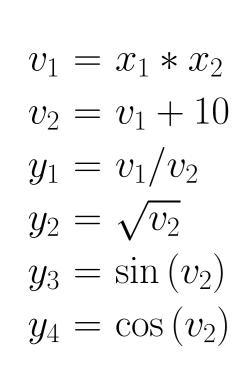
Optimal Jacobian accumulation

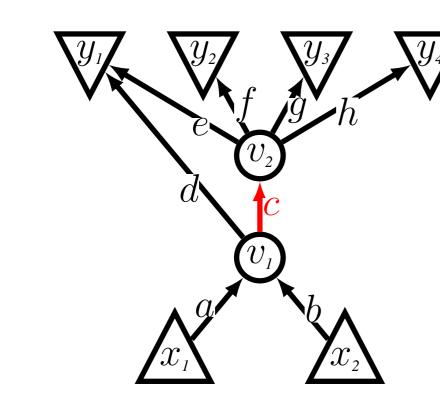
Given the graph G for vector function $\mathbf{y} = F(\mathbf{x}), F : \mathbb{R}^n \to \mathbb{R}^m$, Baur's formula yields the entries of the Jacobian as

$$J_{j,i} \equiv \frac{\partial y_j}{\partial x_i} = \sum_{P \in \mathcal{P}_{[x_i \to y_i]}} \prod_{e \in P} c_e ,$$

where $\mathcal{P}_{[x_i \to y_i]}$ denotes the set of all paths from x_i to y_j in G.

Example 1. $y_1 = (x_1 * x_2)/(x_1 * x_2 + 10), \ y_2 = \sqrt{x_1 * x_2 + 10}, \ y_3 = \sin(x_1 * x_2 + 10), \ y_4 = \cos(x_1 * x_2 + 10). \ J_{1,1} = ad + ace, \ J_{1,2} = bd + bce, \ J_{2,1} = acf, \ J_{2,2} = bcf, \ J_{3,1} = acg, \ J_{3,2} = bcg, \ J_{4,1} = ach, \ J_{4,2} = bch.$





$$t_1 = c * e;$$
 $t_2 = d + t_1;$
 $J_{1,1} = a * t_2;$ $J_{1,2} = b * t_2;$
 $t_3 = a * c;$ $t_4 = b * c;$
 $J_{2,1} = t_3 * f;$ $J_{2,2} = t_4 * f;$
 $J_{3,1} = t_3 * g;$ $J_{3,2} = t_4 * g;$
 $J_{4,1} = t_3 * h;$ $J_{4,2} = t_4 * h;$

Problem 1. STRUCTURAL OPTIMAL JACOBIAN ACCUMULATION (SOJA)

Instance: Dag G = (V, E), where each $e \in E$ is labeled with some c_e such that all c_e are unique real variables that are algebraically independent, positive integer K.

Question: Is there a straight-line program using operations in $\{+,*\}$ of length K or less that computes every entry in J such that every operand is either some c_e or the result of a previous operation?

Problem 2. OPTIMAL JACOBIAN ACCUMULATION (OJA)

Instance: Dag G = (V, E), where each $e \in E$ is labeled with some c_e that represents a real variable, positive integer K.

Question: Is there a straight-line program using operations in $\{+,*\}$ of length K or less that computes every entry in J such that every operand is either some c_e or the result of a previous operation?

Theorem 1 (Naumann 2008). OJA is NP-hard.

Corollary 1 (Naumann 2008). OJA* is NP-hard.

Problem 3. STRUCTURAL OJA WITH UNIT EDGES (SOJA₁)

Instance: Dag G = (V, E), where each $e \in E$ is labeled with either a unique real variable c_e or a positive or negative unit label +/-1 such that all c_e are algebraically independent, positive integer K.

Question: Is there a straight-line program using operations in $\{+,*\}$ of length K or less that computes every entry in J such that every operand is either the label on some $e \in E$ or the result of a previous operation?

The complexity of $SOJA_1$ and $SOJA_1^+$

An instance of ENSEMBLE COMPUTATION consists of a finite set S, a collection $C = \{C_1, C_2, \ldots, C_r\}$ of distinct subsets of S, and a positive integer K. It is **NP**-hard to decide whether the sets in C can be constructed from the elements of S using K or fewer disjoint union operations.

Lemma 1. SOJA⁺ is NP-hard.

Proof. Reduction from ENSEMBLE COMPUTATION.

Theorem 2. SOJA₁ is NP-hard.

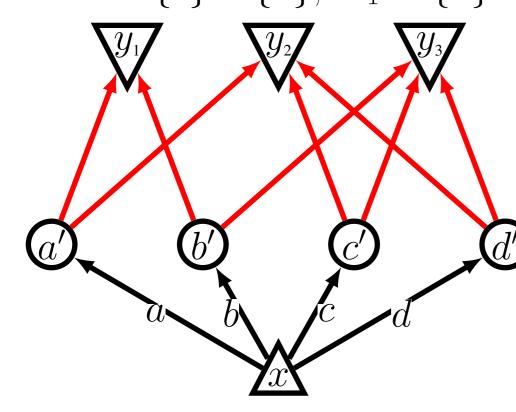
Proof. The instances of $SOJA_1$ that we construct for the above lemma involve additions exclusively.

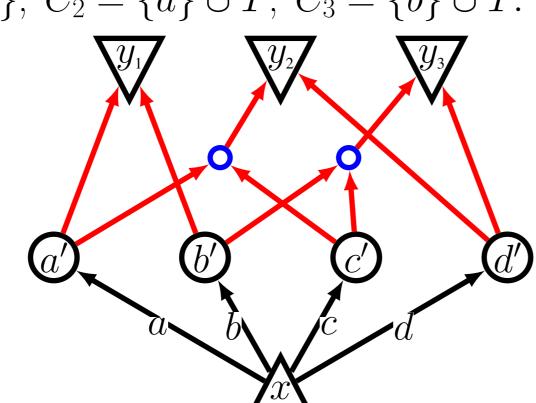
Corollary 2. $SOJA_1$ and $SOJA_1^+$ remain **NP**-hard under each of the following restrictions.

(i) G represents a tangent or gradient and all paths in G have length ≤ 2 .

(ii) G represents a tangent or gradient, all vertices in G have indegree ≤ 2 , and all paths in G have length ≤ 3 .

Example 2. The following graphs correspond to the ENSEMBLE COMPUTATION instance $S = \{a, b, c, d\}, C = \{\{a, b\}, \{a, c, d\}, \{b, c, d\}\}, K = 4$. The answer to this instance is YES, as all sets in C are yielded by the following collection of four union operations. $T = \{c\} \cup \{d\}; C_1 = \{a\} \cup \{b\}; C_2 = \{a\} \cup T; C_3 = \{b\} \cup T$.





The complexity of SOJA*

Problem 4. Partition into Complete Bipartite Subgraphs

Instance: Bipartite graph G = (A, B, E), positive integer K.

Question: Can the edges of G be partitioned into $k \leq K$ disjoint sets C_1, C_2, \ldots, C_k such that each C_i is a complete bipartite graph?

Theorem 3 (Gonzalez and JáJá 1980). Partition into Complete Bipartite Sub-Graphs is **NP**-complete.

Theorem 4. SOJA^{*} is **NP**-hard.

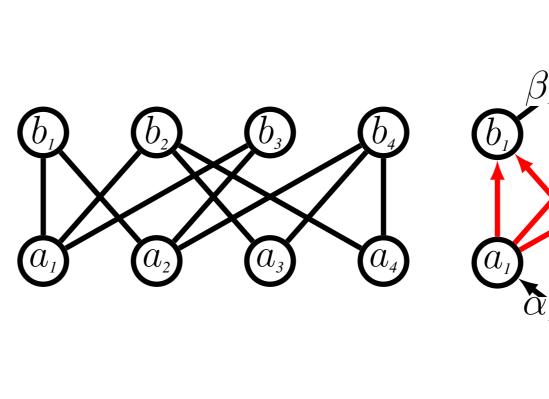
Proof. Reduction from Partition into Complete Bipartite Subgraphs.

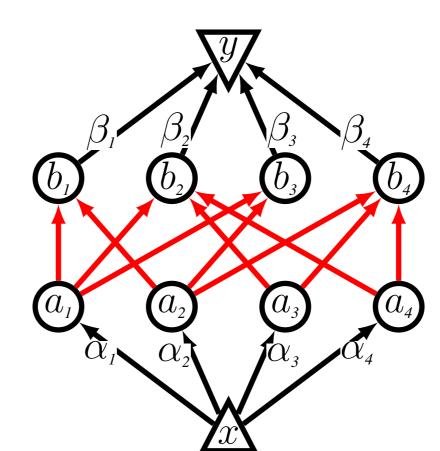
Corollary 3. SOJA₁* remains **NP**-hard under each of the following restrictions.

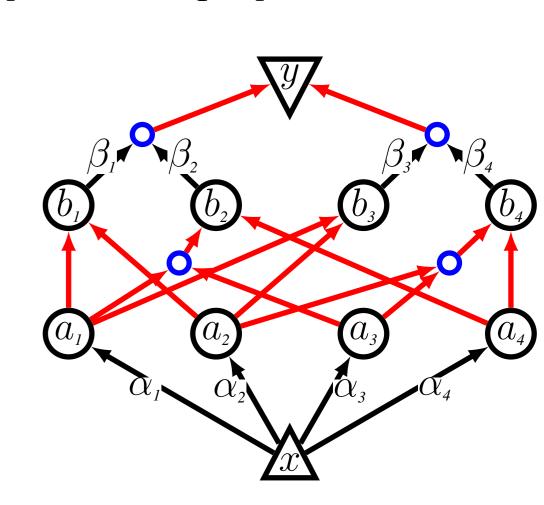
(i) G represents a scalar Jacobian and all paths in G have length ≤ 3 .

(ii) G represents a scalar Jacobian and all vertices in G have indegree ≤ 2 .

Example 3. An instance of Partition into Complete Bipartite Subgraphs and the corresponding instances of SOJA₁. Accumulating J as $(\alpha_1 + \alpha_2)(\beta_1 + \beta_3) + (\alpha_1 + \alpha_3 + \alpha_4)\beta_2 + (\alpha_2 + \alpha_3 + \alpha_4)\beta_4$ carries a cost of three multiplications, which is the minimum for this example, and corresponds to the optimal biclique partition.



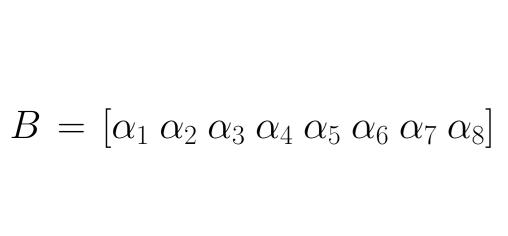


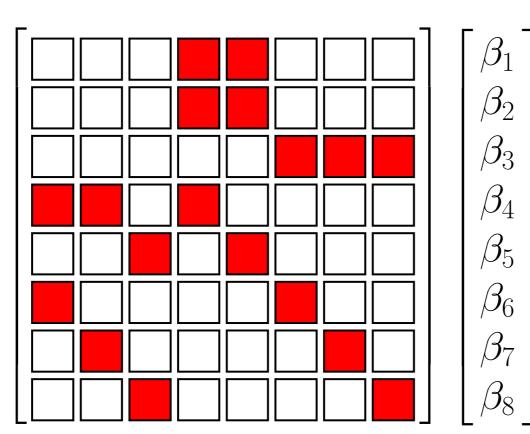


The utility of subtraction

Gonzalez and JáJá (1980) considered the optimal evaluation of bilinear forms $B = \alpha^T R \beta$, where $\alpha = (\alpha_1, \dots, \alpha_p)^T$, $\beta = (\beta_1, \dots, \beta_q)^T$, and R is a $p \times q$ matrix whose elements are all in $\{0,1\}$. As the following example demonstrates, any bilinear form $B = \alpha^T R \beta$ can be expressed as an instance of SOJA₁ such that accumulating the (scalar) Jacobian J yields the value of B.

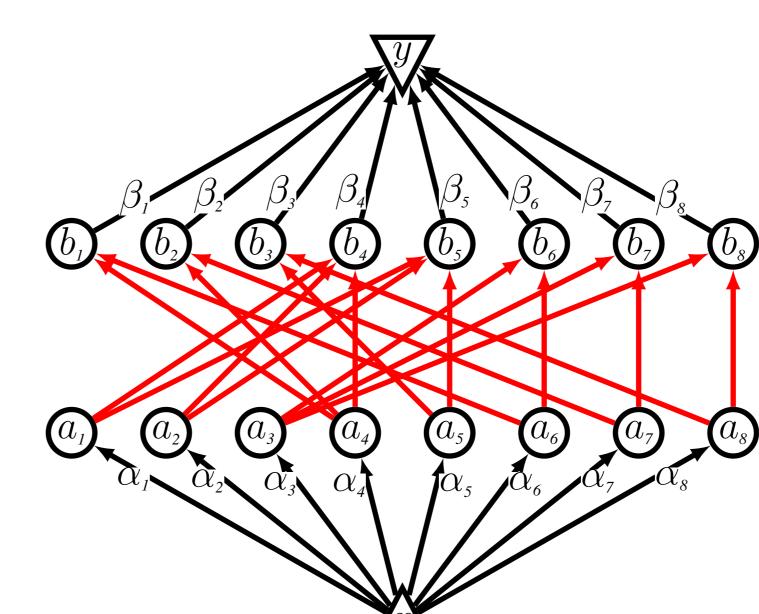
Example 4. The following example is due to Gonzalez and JáJá. It is shown that B can be computed with only six multiplications using operations in $\{+, -, *\}$, whereas seven multiplications are required when using operations in $\{+, *\}$.





 $= \alpha_1 \beta_4 + \alpha_1 \beta_5 + \alpha_2 \beta_4 + \alpha_2 \beta_5 + \alpha_3 \beta_6 + \alpha_3 \beta_7 + \alpha_3 \beta_8 + \alpha_4 \beta_1 + \alpha_4 \beta_2$ $+ \alpha_4 \beta_4 + \alpha_5 \beta_3 + \alpha_5 \beta_5 + \alpha_6 \beta_1 + \alpha_6 \beta_6 + \alpha_7 \beta_2 + \alpha_7 \beta_7 + \alpha_8 \beta_3 + \alpha_8 \beta_8$

 $= (\alpha_{1} + \alpha_{2} + \alpha_{3})(\beta_{1} + \beta_{2} + \beta_{4}) + (\alpha_{3} + \alpha_{6})(\beta_{1} + \beta_{6}) + (\alpha_{1} + \alpha_{2} + \alpha_{5})(\beta_{3} + \beta_{5})$ $+ (\alpha_{3} + \alpha_{7})(\beta_{2} + \beta_{7}) + (\alpha_{3} + \alpha_{8})(\beta_{3} + \beta_{8}) - (\alpha_{1} + \alpha_{2} + \alpha_{3})(\beta_{1} + \beta_{2} + \beta_{3}).$



 $J = (\alpha_1 + \alpha_2 + \alpha_3)(\beta_1 + \beta_2 + \beta_4) + (\alpha_3 + \alpha_6)(\beta_1 + \beta_6) + (\alpha_1 + \alpha_2 + \alpha_5)(\beta_3 + \beta_5) + (\alpha_3 + \alpha_7)(\beta_2 + \beta_7) + (\alpha_3 + \alpha_8)(\beta_3 + \beta_8) - (\alpha_1 + \alpha_2 + \alpha_3)(\beta_1 + \beta_2 + \beta_3).$